Back to Basics: Landfill Liner and Cover Systems

PRESENTED BY:
David R. Lutz, P.E.

2019 ESD/MWRA 29th Annual Solid Waste Technical Conference
Lansing, MI
March 27, 2019
What Will We Cover?

• Brief Background and History of Liners

• Types of Liners and Engineering Considerations
 – Composite System
 – Drainage Layer
 – Base Liner
 – Final Cover

• Technological Advances

• Additional Resources/Questions
BACKGROUND AND HISTORY

• **Liner System**: An engineered barrier to limit migration of contaminants to the environment

• **Subtitle C (40 CFR 264) - 1982**: Type I hazardous landfill (MI-Part 111)

• **Subtitle D (40 CFR 258) – 1991**: Type II non-hazardous landfill (MI-Part 115)

• **Double Liner Vs. Single Liner**

• **Composite System** = Drainage + Synthetics + Low Permeability Barrier (natural or synthetic) + Native
Liner Systems
Liner Systems: Overview

Base Liner

- SYNTHETIC LINER
- COMPACTED CLAY LINER
- DRAINAGE LAYER

Final Cover

- FINAL CLAY AND SYNTHETIC GAP WITH VEGETATION
- LANDFILL GAS TO FLARE STATION OR TO ENERGY UTILIZATION PLANT

Native Soil

- GAS MONITORING PROBE
- GROUNDWATER MONITORING WELL
- LEACHATE COLLECTION SUMP WITH RISER

Final Cover

- GAS COLLECTION WELL
- RAINWATER RETENTION POND
- GROUNDWATER MONITORING WELL
Liner Systems: Base System Overview

Single Liner

Double Liner
Liner Systems: **Drainage Layer**

Function
- Drain Leachate to Sump for Removal
- Maintain Less than 12” of Head on Liner – Mounding Calculation
- Protective Cushion over Liner

Materials
- Sand or Stone – Silica Based, Natural
- Synthetic
 - Geonet, Geocomposite
- Combination
- Alternatives: Tire Shred, Auto Fluff, Blast Furnace Slag, other…
Liner Systems: Drainage Layer

- **Considerations**
 - Permeability/Transmissivity
 - Availability
 - Natural Materials
 - Fines (<#200)
 - Carbonate Content – Leaching
 - Synthetic Materials
 - Interface Friction/Slope Stability
 - Factoring in Biologic/Chemical clogging, impingement, core creep reduction
 - UV Degradation
 - Seaming
Liner Systems: Base Liner

- **Function**
 - “Impermeable” Barrier to Leachate
 - Composite
 - Synthetics
 - Installed Low-Permeability Layer
 - Native Low-Permeability Layer

- **Materials**
 - Synthetics
 - HDPE, LLDPE, PVC, EPDM, Others…
 - Textured, Smooth, Reinforced
 - Seamed
 - Low-Permeability Layer
 - Geosynthetic Clay Liner
 - Re-compacted Clay Soil
Liner Systems:
Base Liner - Synthetics

- Considerations
 - Chemical Compatibility with Leachate
 - Interface Friction/Slope Stability
 - Differential Settlement Tolerance
 - High Temperature Tolerance
 - Exposure – UV Degradation
 - Proper Installation (QA/QC)
 - Protection during In-Service
Liner Systems: Base Liner – Low Permeability Layer

• Considerations
 – Geosynthetic Clay Liner (GCL)
 • Chemical Compatibility with Leachate
 – Polymer-enhanced Bentonite
 • Exposure – Seam Separation
 – Appropriate Overlap
 – Loose Bentonite Augmentation
 • Interface Friction/Slope Stability
 – Carrier Fabric
 – Internal Shear Strength
 » Method of Construction
 – System Stability

• Compacted Clay Liner (CCL)
 • Availability/Quality
 • Moisture Conditioning/Desiccation
 – Desiccation = Increased Permeability
 • Differential Settlement
 – Fissures = Increased Permeability
Liner Systems: Cover System Overview

- Composite System (Typically)
 - Multiple Material Variations and Configurations

Type I (Hazardous)

Type III (Mono/C&D) Type II (Municipal)
Liner Systems: Final Cover

- **Function**
 - Environmental Barrier
 - Limit Precipitation Infiltration

- **Materials**
 - Composite System – Similar To Base Liner

- **Considerations**
 - Interface Friction/Slope Stability
 - Gas Venting
 - Internal Drainage
 - Stormwater Management/ Erosion Control
 - Differential Settlement: Material Selection
 - Construction Technique: Equipment Direction
Liner Systems:
Final Cover – Veneer Stability
Liner Systems: Final Cover Considerations

• Management of Water
 – Internal Drainage
 • Limit Excessive Pore Pressure Buildup -> Stable Slope
 – Stormwater Management
 • 25-Year/24-Hr Storm
 • Manage Runoff
 – Erosion Control
 • Soil Loss < 2 Tons/Ac
 – Diversion Berms/ Swales
 • Erosion Control Products
 – Rip-Rap
 – TRM/Blankets
 – Seed Mixture Selection
Technological Advances
Liner Systems: Technology Advances

- "System" Products
 - Closure Turf
 - Synthetic Grass
 - Super Gripnet
 - Combined Geomembrane/Geonet
 - DrainTube
 - Geocomposite/Drainage Layer
 - Gas and/or Liquid
 - Permeable Caps
 - Multi-Layer
 - Evapo-transpiration
 - Climate Dependent
Liner Systems: Technology Advances

- Liner Products
 - Leak Detection Geomembranes
 - Conductive Layer for Spark Testing (D7240)
 - Exposed Geomembrane Covers
 - Eliminate Protective Cover Layers
 - UV Degradation, Stormwater Control and Uplift Considerations
 - Solar Panel Integration
 - Erosion Control Products
 - Specially formulated stabilizers/polymers/enhancers for site-specific considerations of different materials
References/Questions
References/Questions

• Resources
 – GRI: Geosynthetic Research Institute
 • https://geosynthetic-institute.org/
 – FGI: Fabricated Geomembrane Institute
 • https://www.fabricatedgeomembrane.com/
 • Free Webinars

• Manufacturers

• Books
 • Geotechnical Aspects of Landfill Design and Construction, (2002), Koerner et. al.
 • Designing With Geosynthetics 6th Ed., (2012), Koerner

• Questions?
Thank You!

David R. Lutz, P.E.
Vice President, Principal Engineer
dlutz@nthconsultants.com
248-662-2750